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To study the usefulness of second-order Møller–Plesset (MP2) correlation energies for ground
states of closed-shell atoms (referred to as MP2/CA energies) in estimations of the total cor-
relation energies of larger closed-shell atoms, we have considered atoms and ions containing
from 10 to 86 electrons. First, it is demonstrated that for N-electron systems, 10 ≤ N ≤ 18,
the MP2/CA energies provide very good approximations to the very accurate estimates of
atomic correlation energies by Chakravorty and Davidson. Next, for systems with 10 ≤ N ≤
54, comparisons are made with the semiempirical energies obtained when using the models
by Chakravorty and Clementi as well as by Clementi and Corongiu. Finally, for atoms with
10 ≤ N ≤ 86, the MP2/CA energies are employed for comparison with DFT energies recently
obtained by Andrae et al. (Int. J. Quantum Chem. 2001, 82, 227). The MP2/CA results proved
to provide reasonable estimates to the total correlation energies in all the cases considered.
Keywords: Semiempirical calculations; DFT; MP2; Correlation energies; Quantum chemistry;
Quantum mechanics; Wave functions.

The problem of providing a reliable description of the electronic structure
of atoms, molecules and solids has been in the center of interest since the
early days of quantum mechanics. A diversity of techniques has been put
forward both on the nonrelativistic and relativistic levels of the theory. For
a long time methods based on the use of (approximate) wave functions
have dominated in theory and applications. The most serious challenge for
these methods, which we shall refer to as WFT (wave function theory), has
been the proper description of electron correlation effects, which is equiva-
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lent to proceeding to methods yielding results of higher accuracy than the
one-electron schemes of the Hartree–Fock (HF) type. During the last two de-
cades, we can witness the eruptive development of methods within an al-
ternative approach to many-electron systems – the density function theory
(DFT) – based on the fundamental work of Hohenberg and Kohn1 and
Kohn and Sham2. These methods, built on the relatively simple concept of
electron density distribution, have nowadays become the most frequently
used tool in the electronic structure theory (for details and references, see,
e.g., refs3,4). However, from the methodological point of view, an essential
drawback of DFT is that the exact functional dependence of the energy on
the density remains unknown even for the ground state.

An important role in the development of new many-electron methods of
adequate accuracy both in the WFT and DFT approaches is played by com-
prehensive investigations aiming at the evaluations of their dependability.
Due to the absence of mathematical tools helpful in this respect, truly
meaningful reliability assessments must rely on comparisons with highly
accurate or exact (for model systems) ab initio results, which is presently
possible within the wave function approaches where there are no uncer-
tainty problems caused by the lack of knowledge of the energy functional.

Ground-state energies of atomic systems have always played an impor-
tant role in studies of the accuracy of various quantum-chemical methods,
which is due to the fact that spherical symmetry and one-center character
makes it possible to attain results of higher accuracy than for molecules of
the same number of electrons. Presently, an important field of applications
of these energies is investigations aiming at improving the reliability of DFT
methods. These results are useful in several ways, for example, (i) for cali-
brating new functionals and providing reliability tests for the existing DFT
models (cf. refs5,6); (ii) in studies on improved DFT simulations of non-
dynamical correlation effects (see, e.g., refs7,8); (iii) in studies of the influ-
ence of core-valence separation on the structure of electron densities (cf.
ref.9).

Applications of the type just mentioned are severely limited by the lack
of WFT information on the structure of electron correlation effects in larger
atoms, i.e., for systems for which the DFT models are most readily applied.
In the present investigations we are concerned with various nonrelativistic
methods of calculating the energy of closed-shell atoms including up to 86
electrons. We realize that for larger atoms comparison of these results with
experimental energies would require taking into account very significant
relativistic effects. However, the knowledge of correlation energies for large
atoms is important from the methodological point of view. This knowledge
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is helpful in setting up semiempirical models for treating correlation effects
within the WFT as well as in studying the usefulness and the applicability
range of various approximate DFT functionals. In fact, large atoms are very
attractive in this respect as in their inner- and outer-most regions the elec-
trons move in different close-to-extreme conditions.

To better motivate the main aim of the present work, we will start with a
quick look at the atomic correlation problem within the framework of the
wave function approach.

RESULTS AND DISCUSSION

Present State of Information on Correlation Energies for Larger Atoms

Results of very high (spectroscopic) accuracy are presently available only for
very small atomic systems including just two, three or four electrons (see,
e.g., ref.10). For example, the accuracy of available variational energies,
which provide upper bounds to the exact energies, drops rapidly as the
number of electrons in the atom increases. For 10-electron atoms (Ne) the
variational result represents about 97.7% of the exact correlation energy,
Ecorr

11 (Ecorr = Eexact – EHF
12). For 12-electron systems (Mg), the variational

result amounts only to 93.3% 13. Finally, for 18-electron atoms so far one
has obtained by variational methods only 90.9% of the exact correlation
energies. For systems containing up to 12 electrons, there are several non-
variational calculations which yield results of higher accuracy than their
variational counterparts (see, e.g., the results by Müller et al.14 and
Gdanitz15, who obtained for Ne about 99.7% of the correlation energy).
A consequence of the numerical demands of post-Hartree–Fock calculations
is that for atomic systems containing more than 18 electrons, there are very
few ab initio results for the correlation energies. As a rule, their accuracy is
rather low, which is caused by the necessity of restricting the size of the ba-
sis sets (e.g., by strongly restricting the l-values of atomic orbitals) as well as
the number of correlated electrons (e.g., to subsets of valence electrons).

Another source of atomic correlation energies is experimental (atomic
spectroscopy) results corrected for relativistic effects. Work along these
lines was initiated in the sixties (see, e.g., refs16,17) and continued up to the
late eighties18. More recently, to improve the accuracy of previous results,
Davidson, Hagstrom, Froese Fischer, Chakravorty et al.5,19,20, by combining
experimental data (sums of successive ionization potentials) and improved
ab initio calculations of relativistic effects, have put forward a modified
method of accurate estimation of ground-state correlation energies. Their
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studies included atoms and ions with 3 to 18 electrons and nuclear charges
up to Z = 28. We shall refer to these results as “accurate estimates of the
nonrelativistic correlation energies” and denote them by Ecorr

estim . It should be
mentioned, however, that applying this approach to larger atoms seems to
be an extremely difficult task, which would require intensive experimental
work to provide the necessary spectroscopic data as well as new methods
for estimating accurately the relativistic effects. This is a gloomy outlook
from the general methodological point of view because the lack of trust-
worthy correlation energies for large atoms restricts the usefulness of WFT
results in the search for universal physically motivated DFT functionals.

Taking into account the restricted possibilities in obtaining accurate em-
pirical correlation energies for larger atoms, one should appreciate the ef-
forts in setting up methods of estimating these energies based on sound
model considerations. Let us just mention the two models representing ex-
tensions of the HF method. Both of them have been conceived for the treat-
ment of atomic correlation effects but have been later generalized to
molecular systems. The first of these approaches devised by Chakravorty
and Clementi21 may be considered equivalent to employing perturbed
Roothaan HF orbitals. It requires the re-evaluation of the two-electron
integrals due to the introduction of a modified inter-electronic interaction
potential, associated with a soft Coulomb hole whose magnitude is deter-
mined by a set of semiempirical parameters. The other model has been re-
cently put forward by Clementi and Corongiu22 who have developed a
different semiempirical approach to obtain the electron correlation energy.
In this method one selects an effective Hamiltonian with small perturba-
tions proportional to a function of electron density for the HF matrix ele-
ments. This function is represented by a set of parameters determined from
experimental data. Whenever comparison is possible, the correlation ener-
gies obtained are reasonably close to the accurate estimates by Chakravorty
and Davidson.

In closing this quick look at the atomic correlation energy problem in
WFT, we arrive at the rather pessimistic conclusion that for larger than 18-
electron atoms we do not have access either to accurate ab initio results or
to dependable estimates from experimental data. In addition, when pro-
ceeding to the largest atoms, the two semiempirical model approaches con-
sidered yield values that show increasing discrepancies with the empirical
estimates by Chakravorthy and Davidson.

The question arises: Is there a way to alleviate the problem of correlation
energies for large atoms? We think, that to a certain extent, it is. We would
suggest that rather than attempting to use advanced but prohibitively ex-
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pensive ab initio methods to arbitrary large atoms, it might be better to ap-
ply an incomparably cheaper ab initio method to a properly chosen subset
of atomic systems. In a recent review on the second-order picture of correla-
tion effects in closed-shell atoms, the present authors23 have presented
arguments that for this important class of many-electron systems, second-
order energies obtained within the framework of the Møller–Plesset pertur-
bation theory (MP2)24 based on the restricted-HF (RHF) zero-order problem
may provide a source of reliable information concerning the correlation en-
ergy of larger atoms. This situation is due to two facts: First, for closed-shell
atomic systems one has to deal with predominantly dynamical correlation ef-
fects25 which are expected to be well represented by the lowest order of MP
perturbation theory. Second, owing to the spherical symmetry of atomic
systems, the MP2 energies can be calculated with extremely high accuracy
if advantage is taken of the possibility of a systematic reduction of the
problem into separate radial and angular subproblems. The radial part of
the wave functions required in the calculations may be accurately repre-
sented either in terms of global or local basis sets. In the former case exten-
sive sets of properly optimized Slater orbitals have been used (see, e.g.,
ref.26), whereas in the latter case the p-version finite element formalism27 is
used. Accurate representations of the radial parts of the wave functions
have been used in calculations of energy increments corresponding to all
virtual orbitals, including those of very high angular momentum (up to lmax = 9
or lmax = 12). The remaining small portion of the second-order energy is ob-
tained by angular extrapolation procedures based on mathematical consid-
erations28.

For closed-shell systems, in addition to their high accuracy, the various
types of increments to the MP2 energies disclose interesting properties,
which are very helpful for the rationalization of the structure of correlation
energies even in nonclosed-shell atoms (for details see ref.23).

Taking into account that most of the techniques used to attain the high
accuracy of the MP2 energies are uniquely defined only for closed-shell
atoms and that only for such atoms the increments to the MP2 energy dis-
close various interesting regularities, we refer to all such applications of the
Møller–Plesset method by the acronym MP2/CA. Mention should be made
that the use of extensive radial basis sets even in calculations of energy in-
crements defined by orbitals corresponding to high l-values provides solid
foundations for reliable extrapolating, which cause that the MP2/CA ener-
gies may be considered as practically basis-set-independent. Further justifi-
cations of such a characteristic is provided by extensive calculations of the
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MP2/CA energies performed within four different realizations of the meth-
odology sketched above (for details see ref.23).

To demonstrate the accuracy of the MP2/CA correlation energies, we
compare them in Table I with the latest accurate estimates, Ecorr

estim by
Chakravorty and Davidson20. Let us mention that a comparison of the
MP2/CA values with the first accurate estimates by Davidson and cowork-
ers19 has already been reported by one of us29. One sees from the table that
for all Z values considered, the agreement is higher than 95%. It is espe-
cially satisfactory for the Ne-like atoms, which is a consequence of the per-
fectly closed-shell structure of these systems. The degree of agreement
reaches its low for the Mg-like ions at the highest value of Z considered (Z =
28), which is certainly a demonstration of quasidegeneracy effects for the
3s2 pair. Quasidegeneracy seems to have a smaller impact on the results for
the Arlike systems, for which one can even observe an improved agreement
in the high-Z regime.

The high accuracy of the MP2/CA correlation energies for the ground
states of atoms including up to 18 electrons may provide a justification of
the expectation that also for larger closed-shell atoms the MP2/CA energies
yield the bulk of the correlation energies. It is very unlikely that in the fore-
seeable future such portions of the correlation energies can be obtained by
any of the more advanced ab initio methods. Our high accuracy expecta-
tions are further supported by the regularities disclosed by various contribu-
tions to these energies for varying N and Z values (for an extensive
discussion, see ref.23). An important argument for using MP2/CA energies
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TABLE I
Comparison of accurate estimates of the correlation energies Ecorr

estim and MP2/CA energies (in
Eh, all signs reversed)

Z

Ne-like Mg-like Ar-like

Ecorr
estim a MP2/CAb Ecorr

estim a MP2/CAb Ecorr
estim a MP2/CAb

10 0.39120 99.21

12 0.39060 98.93 0.43943 97.38

18 0.39968 99.40 0.49648 97.01 0.72610 97.71

20 0.40205 99.54 0.50978 96.80 0.76174 97.97

28 0.40811 99.84 0.55363 95.78 0.87146 98.38

a Chakravorty and Davidson20. b % of Ecorr
estim.



in correlation energy studies is the fact that they disclose the following
important, but as yet “empirical”, property of second-order Møller–Plesset
energies for closed-shell ground states: these energies are of smaller magni-
tude than the exact correlation energies. Hence, the sum of the accurate HF
and MP2/CA energies provide upper bounds to the ground state energies.

The aim of this article is to test the usefulness of the MP2/CA approach in
calculations of the total correlation energies of larger atoms. We present a
compilation of published and unpublished MP2/CA energies for atoms and
ions including from 10 to 86 electrons. Detailed information about the
methods of calculation and extrapolation as well as references to already
published energies are given in ref.23 Energies for atoms containing up to
54 electrons are compared with their counterparts obtained when using the
soft Coulomb-hole model of Chakravorty and Clementi21 and the model by
Clementi and Corongiu22 based on the virial constrained effective Hamil-
tonian. Next we compare the HF plus MP2/CA energies for atoms and ions
including up to 86 electrons with the DFT energies recently obtained by
Andrae et al.30

Comparison of MP2/CA and Semiempirical Correlation Energies

Table II collects the MP2/CA correlation energies for closed-shell atomic
systems containing up to 54 electrons as well as the results obtained when
using the semiempirical model approaches by Chakravorty and Clementi21

and Clementi and Corongiu22 mentioned above. To better appreciate the
accuracies of the energies just mentioned, we have also included in the ta-
ble the relevant Ecorr

estim results by Chakravorty and Davidson20. We should
underline that the semiempirical models considered are defined within the
framework of WFT.

Let us start with the comparison of the MP2/CA correlation energies with
their counterparts calculated when using the soft Coulomb-hole semi-
empirical model21. We shall refer to this model as SCH model. One can see
from the table that, except for the Ne atom, the magnitudes of the SCH-
model correlation energies are larger than of the MP2/CA ones. For systems
containing up to 30 electrons, the differences are of the order of 5%. How-
ever starting with N = 36, one can observe a significant increase in these
differences. For the largest atom (Xe), the MP2/CA energy amounts only to
77.0% of the SCH value! We do not find any explanation for this sudden
increase in the disagreement between the results of the MP2/CA and SCH
methods. Indications of the tendency of the latter method to overestimate
the correlation energies can already be noted for such relatively small at-
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oms like Mg and Ar for which the magnitudes of the SCH energies exceed
the Ecorr

estim ones by about 1%. On the other hand, one can see in Table II that
for Ne the magnitude of the MP2/CA energy discloses an unexpected be-
havior: it exceeds the SCH one by 11.8%. Proceeding to comparison of the
MP2/CA energies with the results of the semiempirical model based on the
virial constrained effective Hamiltonian22 (which we shall refer to as the
VCEH model), one can see from Table II that for all but the Zn atom the
magnitudes of the latter ones are larger by 4–10%. For Zn the magnitude of
the MP2/CA energy is larger by 0.7% from the VCEH result. We note from
the results for members of the Mg and Ar isoelectronic series that the agree-
ment between the MP2/CA and VCEH energies improves with increasing
nuclear charge. This tendency is not observed for the Ne series, where the
differences are close to constant. It is apparent from the table that in all
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TABLE II
Comparison of MP2/CA energies with “experimental” and semiempirical correlation energies
(in Eh, all signs reversed)

Atom N MP2/CAa Chakravorty
and Davidsonb

Chakravorty
and Clementic

Clementi and
Corongiud

Ne 10 0.38811 0.39120 0.347 0.4080

Na+ 10 0.38577 0.38978 0.4016

Mg2+ 10 0.38643 0.39210 0.4037

Mg 12 0.42793 0.43943 0.442 0.4656

Al+ 12 0.44022 0.45253 0.4645

Si2+ 12 0.44981 0.46337 0.4702

Ar 18 0.70945 0.72610 0.736 0.7817

K+ 18 0.72850 0.74452 0.7822

Ca2+ 18 0.74629 0.76174 0.7869

Ca 20 0.79816 0.843 0.8524

Zn 30 1.69746 1.740 1.6860

Kr 36 1.8907 2.262 2.0671

Sr 38 1.9772 2.436 2.1585

Cd 48 2.7253 3.453 3.0042

Xe 54 3.0877 4.010 3.4275

a References to published results are given by Flores et al.23 b Accurate estimates from experi-
mental data20. c “Soft” Coulomb-hole approach21; results published in ref.32 d Virial con-
strained effective Hamiltonian method22.



cases when comparison with Ecorr
estim is possible, the VCEH approach over-

estimates by 1.5–7% the accurate estimates of the correlation energy.
For neutral atoms this overestimation increases with increasing number of
electrons, which might be an indication of the fact that also for the largest
atoms included in the table, the magnitudes of the VCEH energies are
larger than the magnitudes of the accurate correlation energies.

In closing this discussion let us concentrate on comparison of the SCH
and VCEH energies given in Table II. As may be seen in the table, up to N =
20, the magnitudes of the latter energies are larger than the former ones.
For the N ≥ 30, we deal with the reverse situation. The difference is espe-
cially pronounced for the largest atoms, e.g., for Xe it amounts to 17%.
Since for this atom also the SCH energies are larger than the MP2/CA ones
by about 30%, it is very likely that for larger atoms the SCH model provides
a less accurate description of the correlation effects than the VCEH model.
The present discussion does not lead to any conclusions concerning the rel-
ative accuracies of the MP2/CA and VCEH methods. The present VCEH re-
sults do not challenge our earlier statement that the MP2/CA energies are of
smaller magnitudes than the exact correlation energies. It seems also very
likely in most cases the magnitudes of the VCEH energies are larger than
the magnitudes of the exact correlation energies.

Comparison with DFT Results for Larger Atoms

Very recently, to provide reference data for algebraic approaches and to
compare various density functionals, Andrae et al.30 have studied several
density functionals in numeical, i.e., basis-set-free, nonrelativistic Kohn–
Sham2 calculations for closed-shell atomic systems including up to 120
electrons. When discussing the accuracies of total energies obtained from
calculations with various exchange-correlation energy density functionals,
the authors mention the fact that exact nonrelativistic total energies for re-
liable comparisons are available only for the lightest atoms and, conse-
quently, make such comparisons only for systems including up to 10
electrons. In the light of the arguments presented above, it seems that for a
reasonable discussion of the accuracy of the remaining DFT results for the
closed-shell atoms considered, it might be sufficient to use estimates of the
total energy represented by the HF+MP2/CA ab initio energies.

Out of the three sets of results published by Andrae et al.30, we have cho-
sen for discussion two sets that yield the most accurate results, viz., the re-
sults obtained for the exchange-correlation potentials LDA-VWN80 33 and
van Leeuven–Baerends34 (LB94). The DFT energies along with the estimates
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of the total nonrelativistic energies, Etot
nrel , are collected in Table III. When-

ever possible, i.e., for N ≤ 18, we have used the formula

E E Etot
nrel

HF corr
estim= + , (1)

where Ecorr
estim results are taken from ref.20 In the remaining cases the formula

E E Etot
nrel

HF corr
MP2 /CA= + (2)
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TABLE III
Energy differences, ∆EDFT, between DFT and estimated nonrelativistic total energies, Etot

nrel a

(in Eh)

Atom N

∆EDFT

Etot
nrel a

LDA/VWN80 b LB94 c

Ne 10 0.70743 0.36105 –128.938298

Na+ 10 0.82048 0.38179 –162.066742

Mg2+ 10 0.93667 0.40054 –199.222910

Mg 12 0.91730 0.44184 –200.054066

Al+ 12 1.03085 0.45830 –242.127201

Si2+ 12 1.14672 0.47199 –288.459267

Ar 18 1.60467 0.76503 –527.543613

K+ 18 1.73152 0.78874 –599.762099

Ca2+ 18 1.85761 0.80694 –676.916093

Zn 30 2.9928 1.4746 –1779.5456

Kr 36 3.8255 1.8878 –2753.9457

Xe 54 6.4193 3.1609 –7235.2261

Ba 56 6.7027 3.2626 –7886.7643

Yb 70 8.5680 4.2931 –13396.5412

Hg 80 10.2603 5.2703 –18414.4425

Rn 86 11.2990 5.8089 –21872.5462

a See the text, Eqs (1) and (2). b Vosko–Wilk–Nusair33. c van Leeuven–Baerends potential34.



is employed. The values of Ecorr
MP2 /CA for N ≤ 54 are given in Table II. The

MP2/CA correlation energies for Ba, Yb, Hg, and Rn amount to –3.2205,
–5.085, –5.451, and 5.774 hartree, respectively (see refs35,36). From the re-
sults given in Table I, it is evident that using Eq. (2) instead of Eq. (1) would
have no impact on our discussion.

As may be seen in Table III for all the atoms considered, the DFT total en-
ergies are higher than the estimated nonrelativistic total energies. The devi-
ations with respect to the Etot

nrel values are almost twice larger for the
calculations based on the VWN80 potential than for the LB94 one. More-
over, for neutral atoms, these deviations increase in a monotonic way when
increasing the number of electrons. Let us notice that for the LB94 results
the deviations are close to the magnitudes of the correlation energies and
that in several cases these results are less accurate than their HF counter-
parts. For the VWN80 potential all the energies obtained are higher than
their HF counterparts. The differences increase from the value of 0.3162
hartree for Ne to the value of 5.525 hartree for Rn. It seems that, the ex-
change correlation potentials considered by Andrae et al.30 are not suf-
ficiently well adapted for applications involving large atoms. Concluding,
let us just mention, that the use in the estimates of the nonrelativistic total
energies of semiempirical VCEH correlation energies discussed in the previ-
ous section would further deteriorate the agreement with the DFT results.

CONCLUSIONS

In a quick look at the present state of the electron correlation problem for
larger atoms, we have indicated the lack of reliable results for these systems
within the framework of the wave function theory (WFT). This situation
has several negative consequences, e.g., it limits the possibilities of using
WFT energies for scaling DFT functionals in a very important range of ap-
plications. One way of alleviating this problem is the use of MP2/CA corre-
lation energies for estimation of the values of the total correlation energies
in large closed-shell atoms (see the discussion by Flores et al.23). In this
work we have studied the usefulness of the MP2/CA energies in estimations
of the total correlation energies of larger closed-shell atoms. We have con-
sidered atoms and ions containing from 10 to 86 electrons. First, we have
shown that for up to 18-electron systems, the MP2/CA energies provide
very good approximations to the very accurate estimates of atomic correla-
tion energies by Chakravorty and Davidson20. Next, for N-electron systems
with 10 ≤ N ≤ 54, comparisons are made with the semiempirical energies
obtained when using the WFT models by Chakravorty and Clementi21 as
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well as by Clementi and Corongiu22. Finally, for atoms with 10 ≤ N ≤ 86,
the MP2/CA energies are employed for comparison with DFT energies very
recently obtained by Andrae et al.30 Let us mention, that within the frame-
work of WFT, for systems with 56 ≤ N ≤ 86, there are no other ab initio or
semiempirical correlation energies available for comparison.

We have found that in all the cases mentioned, the MP2/CA results
proved to provide reasonable estimates to the total correlation energies and
have been useful in discussing the quality of semiempirical and DFT results.

This work was supported in part by the Committee for Scientific Research (KBN) through grant
No. 7 T09A 068 21.
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